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THE CLEARANCE OF HIDDEN CESTODE INFECTION TRIGGERED BY AN INDEPENDENT 
ACTIVATION OF HOST DEFENSE IN A TELEOST FISH 

Claus Wedekind* and Tom J. Little 
Institute for Cell, Animal and Population Biology, Kings Buildings, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, Scotland, 
U.K. e-mail: claus. wedekind@nat. unibe. ch 

ABSTRACT: Parasites often elude effective recognition or attack (or both) by the host immune system, for example, though a 
tegument that possesses nonimmunogenic features. However, a general activation of host defense due to independent stimuli may 
increase immune activity to a level where such disguises are no longer effective, resulting in the clearance of an infection. We 
experimentally infected three-spined sticklebacks (Gasterosteus aculeatus) with the cestode Schistocephalus solidus. To indepen- 
dently foster a general immune response a few days later, we cut the tips of spines in some fish and sham-treated other fish. 
Cutting spines significantly reduced the prevalence of the infection. The injury evoked a physiological reaction that helped to 
clear a hidden parasite infection. 

Parasites of vertebrates often evade detection and expulsion 
by various countermeasures, including exploitation and sup- 
pression of the host immune system (Riffkin et al., 1996; Dam- 

ian, 1997). Another strategy, exemplified by the cestode Schis- 

tocephalus solidus, involves a double integument where the out- 

er membrane possesses features with extremely low immuno- 

genicity; antibodies and immune cells recognizing the outer 
membrane are scarcely produced (Conradt and Schmidt, 1992; 
Schmidt, 1995). We hypothesized that such immune evasion 

strategies might fail the parasite if the host's immune system 
becomes sufficiently activated because of other infections or 

another source of immune stimulus. 
It has been suggested that a general immune activation occurs 

in response to signals associated with tissue damage (Matzinger, 
1990; Hoffmann et al., 1999; Todryk et al., 2000). We, there- 

fore, tested the hypothesis that a slight injury can sufficiently 
activate the host immune system to clear an otherwise persistent 
infection. As an experimental model, we used the three-spined 
stickleback (Gasterosteus aculeatus), a teleost fish, and exposed 
them to the pseudophyllidean cestode S. solidus. This cestode 

grows in the body cavity of the fish and is highly host specific 
(Braften, 1966; Orr et al., 1969). The cestode uses the fish only 
as second intermediate host where it attains infectivity to the 
final host, a fish-eating bird, 1-3 mo after infection. After the 
cestodes would normally have been established in their fish 

host, we cut the tips of spines in some fish (while sham-treating 
other fish as controls) and subsequently examined the effect on 
infection. Cutting the tips of spines has routinely been used in 
behavioral studies on sticklebacks to provide individual mark- 

ings (Bakker and Sevenster, 1995). 

MATERIALS AND METHODS 

We bred S. solidus in an in vitro apparatus using methods developed 
by Smyth (1954) and modified by Wedekind (1997). Copepods (Ma- 
crocyclops albidus), which are the first intermediate hosts of S. solidus, 
were kept in laboratory cultures as described by Orr and Hopkins 
(1969). We exposed singly kept copepods to 6 freshly hatched parasite 
larvae each and fed them with freshly hatched Artemia sp. Four weeks 
after exposure to parasites, infection status and the number of procer- 
coids were determined in vivo for each copepod as described by We- 
dekind et al. (2000). For infecting fish, we used only multiply infected 
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copepods with procercoids that had clearly developed the cercomer 
stage. 

To experimentally reduce some of the genetic and conditional vari- 
ation among the sticklebacks, we used only fish that were reared in the 
laboratory. These fish were initially bred from adult sticklebacks caught 
from a pond during their breeding season in June. In the laboratory, 
males were separated into 10-L tanks provided with sand in a petri dish 
and some plant material to allow the fish to build nests. Females of 
similar size were housed in groups in large tanks and fed ad lib with 
living plankton. Full-sib groups were produced by introducing a ripe 
female each into the tank of a single male and letting her spawn. The 
eggs were removed 1 hr after spawning and reared separately, first in 
aerated 400-ml beakers until hatching and then as family group in 10- 
L tanks at 13 C, with a constant supply of springwater and 16-hr illu- 
mination per day by a fluorescent 30-W tube. Hatchlings were reared 
for 9 mo and fed with frozen and living plankton. 

We used 60 fish that had hatched within the same week and stemmed 
from 2 different full-sib families (30 individuals each). One day before 
exposure to the parasite-infected copepods, they were placed singly into 
1 of 60 tanks (25 x 15 x 15 [high] cm, 18 C, 16-hr illumination per 
day) and not fed to empty their guts. They were then measured for 
length to the nearest millimeter and weighed to the nearest 10 mg 
(methods for weight measurement of small fish in Frischknecht, 1993). 
Ten hours later, we added 1 living copepod that contained 2-5 infectious 
procercoids into each tank. To evoke feeding behavior, about 50 unin- 
fected copepods were also added to each tank. By the next morning, 
all copepods had been eaten. From the second day after exposure until 
the end of the experiment, the fish were fed ad lib with a mixture of 
living plankton. 

Seven days after exposure to the parasites, groups of 6 fish (3 of each 
fish sib group) were transferred to 1 of ten 20-L tanks. During transfer, 
they received the experimental treatment. One of the 6 fish per tank 
received no spine cut (but was otherwise handled identically), 3 fish 
received 1 spine cut (1 of the dorsal or the pectoral spines), and 2 fish 
received an individual combination of 2 spine cuts. The 20-L tanks were 
constantly supplied with springwater and illumination as described 
above. One fish died due to an accident, but all other fish survived until 
the end of the experiment. 

Ninety days after exposure, a period that allows the plerocercoids to 
reach their infective stage (Tiemey and Crompton, 1992), the fish were 
killed by a cerebrospinal cut. The following measurements were taken: 
length (to the nearest millimeter), total weight (to the nearest 10 mg), 
weight of gut contents, and number and weight of plerocercoids. The 
condition factor of each fish was calculated as the fish weight (minus 
gut content and worm weight) divided by lengthb, where b is the slope 
of the regression between log (weight) against log (length) at the be- 
ginning of the experiment (Bolger and Connoly, 1989). Here, b was 
3.0. 

Most variables were analyzed with simple analysis of variance (AN- 
OVA) models. The exceptions were proportion of fish that became in- 
fected and the effect of the number of administered procercoids, which 
were analyzed in a contingency table using likelihood ratio x2. All sta- 
tistical analyses were performed with the Jmp In statistical package 
(SAS Institute Inc., 2001). 
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FIGURE 1. (a) The prevalence of Schistocephalus solidus infection 
in sticklebacks that received a spine cut or not. (b) The transmission 
rates of parasites in sticklebacks that received a spine cut or not and 
that were infected 90 days after exposure to the parasite. 

RESULTS 

Our experiments tested the effect of minor tissue damage 
(cutting 1 or 2 spines) on the persistence of S. solidus infections 
in G. aculeatus. In no case was there a significant difference 
between receiving 1 versus 2 spine cuts, and therefore, all anal- 
yses compared fish that had no cut spine with fish that had at 
least 1 cut. 

Cutting spines reduced the prevalence among the fish that 
had been exposed to the cestodes. At the end of the experiment, 
all fish that had not received a spine cut were infected, whereas 
only 50% of the exposed fish that had received spine cuts were 
infected (X2 = 11.1, P < 0.001; Fig. la). Resistance appeared 
to be an all-or-nothing trait rather than a continuously varying 
one because transmission rate (the number of plerocercoids per 
administered procercoid) did not differ between the infected 
fish of the 2 experimental groups (F1 32 = 0.03, P = 0.86; Fig. 
lb). There was also no significant difference between the 2 
experimental groups with regard to the final number of parasites 
among the infected fish (F1 32 = 0.39, P = 0.54). The mean 
weight of the plerocercoids at the end of the experiment was 
184.2 mg (SE = 10.9 mg) and not significantly different be- 
tween infected fish that had or had not received any spine cuts 

(F1,32 = 0.50, P = 0.48). 
Starting length (overall mean + SE = 32.1 + 0.5 mm), 

weight (412.9 ? 18.9 mg), and condition factor (1.20 ? 0.01) 
were not significantly different between cut and uncut fish in 
the infection experiment (ANOVA, P always >0.9). The stress 
we probably caused through spine cutting did not significantly 
affect fish growth: infected fish of the 2 experimental groups 
were similar in length (mean of all infected fish _ SE = 51.7 
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FIGURE 2. The condition factor (calculated by excluding worm 
weights) of sticklebacks that were infected (filled bars) or uninfected 
(open bars) at the end of the experiment and that had received a spine 
cut or not. 

+ 0.5 mm), net weight (1,657.0 ? 57.2), and condition factor 

(1.19 ? 0.01) at the end of the experiment (ANOVAs, P always 
>0.24; Fig. 2). Infections were, however, harmful to the hosts 
because noninfected fish developed a higher condition factor 
than infected fish (ANOVA, F1,57 = 13.0, P < 0.001; Fig. 2). 

Aside from the experimental treatment, host length, weight, 
and condition factor were not significant predictors of an infec- 
tion (ANOVA, F1,57 < 0.47, P always >0.40). The overall sex 
ratio, i.e., the percentage of males, was 32% and not signifi- 
cantly different between the 2 experimental groups (Fisher's 
exact test, P = 0.25, 2-tailed). Males were not more often in- 
fected than females (X2 = 0.29, P = 0.59). 

DISCUSSION 

Although chronic stress is thought to be immunosuppressive 
for fish (Watts et al., 2001), we have shown that acute stress, a 
slight injury in this case, may enhance the antiparasite response 
of the host. In particular, 50% of sticklebacks that had received 
spine cuts cleared infection of the cestode S. solidus, whereas 
sticklebacks that did not have their spines cut never cleared 
infection in our experiment. To our knowledge, this is the first 
evidence that the infection of a vertebrate by a worm can be 
naturally cleared by stimulation of a defense system in a man- 
ner that is unrelated to the infection itself. It could be that, 
under some circumstances, injury can be beneficial to a host 
because it acts as a form of immunological priming (Little and 
Kraaijeveld, 2004). 

Our result is compatible with the hypothesis that S. solidus 
establishes itself in the host by not triggering critical compo- 
nents of the immune system. The mechanism by which the 
worms could elude the immune system has been established by 
studies demonstrating the presence of a nonimmunogenic sec- 
ond layer of tegument (Conradt and Schmidt, 1992; Schmidt, 
1995). Such 'silent' entry by the worms may be disrupted if 
the fish simultaneously responds to effects associated with in- 
jury, for example, the products of damaged cells or invading 
microorganisms at the wound site (Matzinger, 1990; Hoffmann 
et al., 1999; Todryk et al., 2000). Although previously unknown 
in vertebrates, a similar phenomenon has recently been shown 
in insects. Thus, Drosophila sp. infected with the bacterium 
Spiroplasma poulsonii do not naturally show an immune re- 
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sponse, but if a response is induced ectopically, the result is a 
reduction of parasite titer (Hurst et al., 2003). That both Dro- 
sophila sp. and our study fish could still mount effective im- 
mune responses when stimulated suggests that these parasites 
do not actively suppress immune responses but rather that they 
elude detection. 

We cannot, however, rule out the occurrence of active im- 
mune suppression, common in many parasitic worms of verte- 
brates, because the stimulation caused by spine cutting could 
elevate immune activity above the level that S. solidus can sup- 
press or manipulate. At present, we can only speculate on the 
mechanisms that underlie our observations. One possible ex- 
planation for the death of S. solidus in injured fish is that the 
injury led to potent activation of the innate immune system, 
which is relatively well developed in fish (Watts et al., 2001). 
Alternatively, there may have been a specific, induced immune 
reaction. For example, antigen cross-reactivity with organisms 
infecting the wound site could lead to the generation of anti- 
bodies that also recognize the cestode thus activating the com- 
plement or other responses that the parasite had previously 
avoided. What does seem certain is that our fish responded to 
signals associated with wounding, and it is worth noting that 
many cells involved in cell repair are also involved in immune 
responses (Matzinger, 1990). Regardless of the mechanism, 
however, our results suggest that tipping the balance between 
susceptibility and resistance to cestode infections may be sur- 
prisingly simple. 
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