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Abstract The Red Queen hypothesis proposes that
frequency-dependent selection by parasites may be
responsible for the evolutionary maintenance of sexual
reproduction. We sought to determine whether para-
sites could be responsible for variation in the occur-
rence of sexual reproduction in 21 populations of
Daphnia pulex (Crustacea; Cladocera) that previous
studies have shown to consist of either cyclical par-
thenogens, obligate parthenogens, or a mixture of both.
We measured parasite prevalence over a four-week
period (which essentially encompasses an entire season
for the temporary snow-melt habitats we sampled) and
regressed three different measures of sexuality against
mean levels of parasite prevalence. Levels of parasitism
were low and we found no relationship between levels
of sexuality and mean parasite prevalence. Genetic
variation with infection level was detected in 2 of the
21 populations, with several different clones showing
signs of overparasitism or underparasitism. Overall,
however, our results suggest that parasites are not a
major source of selection in these populations and it
thus seems unlikely they are responsible for maintain-
ing breeding system variation across the study region.

Keywords Geographical parthenogenesis Æ Red Queen
hypothesis Æ Evolution of sex Æ Parthenogenesis Æ
Natural selection Æ Infection

Introduction

The predominance of sexual reproduction among
Eukaryotic taxa has long puzzled evolutionary biolo-
gists, because the ‘‘twofold cost’’ associated with male
production should put sexual taxa at a major disad-

vantage when they come into competition with their
asexual counterparts (Maynard Smith 1978). This di-
lemma has received much attention over the past few
decades and as a result a large number of genetic and
ecological hypotheses have been proposed in an attempt
to explain both the long-term and short-term mainte-
nance of sex (Bell 1982; Kondrashov 1993; West et al.
1999).

One of the most prominent ecological explanations
for sex, the Parasite Red Queen hypothesis, proposes that
frequency-dependent selection by parasites is responsible
for preventing the spread of asexuality (Bell 1982). The
Parasite Red Queen hypothesis works on the assumption
that parasites will be selected to infect the commonest
host genotypes (Hamilton et al. 1990), and sex is thought
to be advantageous because of the ability of recombi-
nation to create novel genotypes, thus limiting parasite
adaptation to particular genotypic combinations. Con-
sequently, in the longer term, sexual populations may
have higher geometric mean fitness. The hypothesis also
makes several predictions of how prevalence may vary
between breeding systems, depending on the distribution
of parasite abundance. For example, if parasite abun-
dance varies little across populations, then sexuals are
expected to bear lower parasite loads than their asexual
counterparts. If, on the other hand, the risk of infection
varies widely across populations asexuals are predicted
to dominate in low-risk areas whereas sexuals are ex-
pected to hold precedence in areas where parasites are
more abundant (Lively 2001).

Most studies have attempted to test the predictions of
the Red Queen by:

1 examining the relationship between host genotype
frequency and infection by parasites, a test for fre-
quency-dependent selection (Lively et al. 1990; Kelley
1994; Vernon et al. 1996; Dybdahl and Lively 1998;
Little and Ebert 1999);

2 comparing levels of infection in closely related sexual
and asexual species (Moritz et al. 1991; Hanley et al.
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1995; Hakoyama et al. 2001; Michiels et al. 2001;
Kumpulainen et al. 2004); or

3 seeking a relationship between levels of infection and
levels of sex and recombination within species (Lively
1987; Heller and Farstey 1990; Jokela and Lively
1995; Camacho et al. 2002; Lively and Jokela 2002;
Ben-Ami and Heller 2005).

Because results from these studies on a range of
systems have not been in complete agreement, new
studies should ideally attempt to incorporate as many of
these approaches as possible (Lively et al. 1990; Jokela
et al. 2003).

The objective of this study was to examine patterns of
parasitism in cyclically and obligately asexual popula-
tions of the Cladoceran crustacean Daphnia pulex. Spe-
cifically, we wanted to:

1 compare levels of parasitism with levels of sex across
populations; and

2 look for evidence of frequency-dependent infection
patterns within infected populations.

To put this into context, we will now briefly describe
the relevant aspects of Daphnia natural history.

Reproduction and parasitism in Daphnia

In common with most Daphnia species, most popula-
tions of D. pulex are cyclically parthenogenetic. During
favourable periods adult females reproduce by apomixis,
although in response to some environmental cues they
will instead start to produce pairs of haploid eggs by
meiosis. These eggs require fertilisation to develop and,
enclosed within a protective ephippium, they constitute
the resting stage of the Daphnia lifecycle (Hebert 1978).

The occurrence of obligate parthenogenesis in several
Daphnia species has been recognised for some time
(Hebert 1981; Hebert and Crease 1983), and studies of
North American Daphnia pulex populations have re-
vealed that asexual (obligately parthenogenetic) and
sexual (cyclically parthenogenetic) populations often
coexist within the same geographical region (Hebert
et al. 1989, 1993; Hebert and Finston 2001). In contrast
with cyclically parthenogenetic forms, obligate parthe-
nogens produce ephippial eggs that develop without
being fertilised, and genetic studies have revealed that
this is mainly because of the action of a sex-linked
meiotic-suppressor gene (Innes and Hebert 1988). Allo-
zyme and breeding studies have confirmed that these
eggs are diploid and ameiotically produced (Hebert
1981; Innes and Hebert 1988). This aspect of the biology
of the species is particularly appealing, because it means
the potentially confounding factors of ploidy difference
and/or hybridisation, common to other Red Queen
study systems (Lively et al. 1990; Moritz et al. 1991;

Hanley et al. 1995; Brown et al. 1995; Hakoyama et al.
2001; Michiels et al. 2001) can be avoided.

Daphnia are attacked by a wide array of micropara-
sites (Green 1974; Stirnadel and Ebert 1997), many of
which are known to have substantial effects on host
fitness (Green 1974; Schwartz and Cameron 1993; Ebert
1995; Mangin et al. 1995; Stirnadel and Ebert 1997;
Little 1999). Parasite biomass within hosts is often
substantial and, because Daphnia have a transparent
carapace, it is possible to detect many infections without
dissection. This study is one of the first attempts to
examine the role of parasitism in the evolution of
breeding system in North American Daphnia pulex.

Materials and methods

Sampling and examination

Samples were collected from 21 ponds in south-west
Ontario (Fig. 1) over a four-week period during the
Spring of 2003. This geographic area is known to con-
tain both sexual and obligately asexual populations
(Hebert et al. 1988, 1993). Most populations were lo-
cated in small, temporary snowmelt ponds and as such
the length of the sampling period was constrained by the
ephemeral nature of these habitats. One sample was
taken from each pond per week by use of a fine-meshed
aquarium net, and samples were immediately cooled and
maintained at between 1 and 5�C to minimise mortality
before inspection (always within 24 h). After collection
of each sample the sampling equipment was cleaned and
sterilised using 70% ethanol, to avoid spreading para-
sites and hosts between different ponds.

In the laboratory an initial random sub-sample of
�100 to 600 individuals (depending on the density of the
whole sample) was examined under a dissecting micro-
scope. These initial sub-samples were used to estimate
the sex ratio of the population and the proportion of
infected females (on the basis of external examination,

Fig. 1 Map showing the locations of the 21 Daphnia pulex
populations sampled during the study period
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but not dissection, of all size classes, which could result
in some infections being overlooked, although the clear
carapace of Daphnia does make external examination
relatively effective). There was no correlation between
sample size and parasite prevalence (r2 = 0.072,
F = 1.47, P = 0.24). A second, smaller sub-sample
(�50 to 80 individuals) was then frozen at �80�C for
allozyme electrophoresis at a later date. This constituted
the ‘‘random’’ sample for allozyme analysis. Finally, any
infected individuals remaining in the sample were
examined to establish the cause of infection and, if en-
ough were available, intact individuals were also frozen
at �80�C. These individuals constituted the ‘‘infected’’
sample for allozyme analysis.

Allozyme electrophoresis

Samples were analysed using the cellulose acetate elec-
trophoresis methods described in Hebert and Beaton
(1993). Allozyme phenotypes were discriminated by
screening for variation at four enzyme loci known to be
polymorphic in D. pulex from this region (P. Hebert,
personal communication): aldehyde oxidase (AO; EC
1.2.3.1), glucose-6-phosphate isomerase (GPI; EC 5.3.1.9),
mannose-6-phosphate isomerase (MPI; EC 5.3.1.8), and
phosphoglucomutase (PGM; EC 5.4.2.2). For each locus,
distinct alleles were labelled according to their mobility,
with the fastest labelled ‘‘1’’, the next fastest ‘‘2’’, etc.
A single laboratory clone ofD. pulexwas used as a marker
clone (allozyme phenotype = AO-‘‘11’’, GPI-‘‘23’’,
MPI-‘‘33’’, PGM-‘‘22’’).

Analysis

Regression analysis was used to study relationships be-
tween parasite prevalence and three different continuous
measures of sexuality: the genotypic diversity ratio
(GDR), the log-transformed probability that the ob-
served genotypic array was in Hardy–Weinberg equi-
librium (LOGHW), and the population sex ratio.
Pleasingly, we found that the estimates of sexuality from
these were highly correlated; we therefore regard our
results as robust.

Both the GDR and LOGHW have been used to
establish breeding system in previous studies on N.
American D. pulex populations (Hebert et al. 1988,
1989, 1993; Hebert and Finston 2001). The GDR of each
population was calculated by dividing the observed
number of multilocus genotypes by the predicted num-
ber generated by Monte Carlo simulation. The allozyme
data from the first sampling date were always used. The
simulation ran for 50,000 repeats and used the observed
allele frequencies at each locus to produce the mean
number of MLGs predicted for a freely recombining,
panmictic population, of sample size N. Obligately
asexual populations are expected to have low (usually
<0.5) GDR values (Hebert et al. 1993).

LOGHW was calculated by log-transforming the P
values obtained from chi-square analyses, which com-
pared the observed genotypic arrays with those expected
for populations in Hardy–Weinberg equilibrium. As
above, the data from the first sampling date were always
used. Loci regarded as monomorphic (those for which
the frequency of the most common allele was ‡0.9) were
excluded from the analysis. If a population was poly-
morphic at more than one locus the mean log P value
was determined. Log probability values of approxi-
mately �2.00 or less are normally indicative of obligate
parthenogenesis (Hebert et al. 1993).

The final measure of sexuality, the sex ratio of each
population, was estimated by calculating the mean
proportion of males in the population relative to the
mean proportion of ephippial females. Although male
frequency alone has been used as an indicator of sexu-
ality in previous Red Queen studies (Lively and Jokela
2002; Ben-Ami and Heller 2005), the nature of the
reproductive cycle of D. pulex makes it potentially
unreliable here; in sexual populations, males are nor-
mally only produced during periods where there is also
ephippia production, so lack of males may simply indi-
cate that the cues responsible for initiating the sexual
phase of the life-cycle have not yet occurred. Males
would be expected in a sexual population containing
ephippial females, however. As such, any populations in
which ephippial females were not present were excluded
from the regression analyses. We found that this did not
quantitatively affect our results.

To test for evidence of frequency-dependent patterns
of parasitism, we sought to determine whether common
host genotypes tended to be significantly over-parasit-
ized. The genotypic compositions of the random and
infected samples were compared using contingency table
analysis. Genotypes with a frequency of 5% or less were
always pooled in a single ‘‘rare’’ clonal class. If a sig-
nificant difference was found between the infected and
random samples, Fisher’s exact tests were performed on
individual clones to establish which were ‘‘overparasi-
tized’’ and which were ‘‘underparasitized’’. In all cases,
sequential Dunn–Sidak tests were used to adjust for
multiple comparisons (Sokal and Rohlf 1995).

Results

Data for each population are summarised in Table 1.
Mean parasite prevalence ranged from 0 to 3.73%,
averaging 0.73% overall. Three different parasite species
were found, two microsporidians and one bacterium,
although only one parasite species at a time was ever
present in a single population. All three species infected
the swimming muscles, fat cells, and ovaries, although
the bacterium was also found to infect the haemolymph
in the later stages of infection. Attempts were made to
identify each species using Green (1974); these attempts
were unsuccessful, however, and we are currently pur-
suing further taxonomic identification. Because of their
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low prevalence and infrequent distribution, the data for
all three-parasite species were pooled for analysis. Par-
asite prevalence was not related to sex ratio (r2 = 0.021,
P = 0.543), GDR (r2 = 0.007, P = 0.711), or LOG-
HW (r2 < 0.0001, P = 0.985) (Fig. 2). Sex ratio was
significantly related to both GDR (r2 = 0.6,
P < 0.0001) and LOGHW (r2 = 0.44, P = 0.001), and
GDR and LOGHW were also highly correlated
(r2 = 0.599, P < 0.0001).

Contingency table analysis found significant differ-
ences between the clonal frequencies of infected and
random samples in two of the sixteen infected popula-
tions—Sar5c and Eb2. In both populations, when cor-
rections for multiple tests were made, further analysis
could not detect the presence of overparasitized or un-
derparasitized clones.

Discussion

The level of parasitism and patterns of parasite preva-
lence observed in this study do not support the
hypothesis that parasite-mediated selection has been
responsible for the maintenance of sexual reproduction
across this part of the range of D. pulex. Infection levels
were variable, but always low (0–4%). This is in contrast
with results from field studies on parasitism in European
Daphnia populations (Little and Ebert 1999) but does
indicate the possibility that parasitism is too weak a
force to affect D. pulex breeding systems. Highly virulent
parasites may be rare, however, because they kill their
hosts quickly. It is, moreover, unclear whether low
parasite prevalence is consistent across years, and,

Table 1 Mean levels of parasite prevalence and measures of sexuality for 21 population of Daphnia pulex from south-west Ontario

Population Region Observed
MLG (N)

Predicted
MLG

GDR LOGHW Sex ratio
(proportion male)

Mean prevalence
(total N)

Sar4 Sarnia 14 (57) 16.12 0.86 �1.101 0.195 0.01 (1446)
Sar4a Sarnia 25 (44) 21.44 1.17 �1.244 0.362 0.003 (1684)
Sar4b Sarnia 19 (58) 18.51 1.03 �0.127 0.204 0.034 (1999)
Sar5 Sarnia 2 (40) 5.67 0.35 �4 0.033 0.001 (1067)
Sar5a Sarnia 11 (57) 9.86 1.12 �0.116 0.37 0.006 (1573)
Sar5b Sarnia 21 (43) 21.17 0.99 �0.652 0.235 0 (1058)
Sar5c Sarnia 26 (48) 28.21 0.92 �0.694 0.218 0.015 (1237)
Sar6 Sarnia 12 (40) 10.45 1.15 �0.246 0.123 0.001 (1308)
Sar7 Sarnia 1 (40) 3 0.33 �4 0.068 0.037 (786)
Turkey Pt. Long Point 3 (40) 8.09 0.37 �2.112 0.5 0 (1097)
LP7 Long Point 19 (44) 17.85 1.06 �1.016 0.5 0 (707)
LP8b Long Point 15 (40) 17.28 0.87 �0.903 0.5 0.003 (1940)
LP9a Long Point 21 (55) 17.33 1.21 �0.793 0.5 0 (2525)
Ron1 Rondeau 8 (60) 26.83 0.3 �2.751 – 0 (177)
Ron2 Rondeau 11 (50) 32.09 0.34 �1.974 0.034 0.002 (1301)
Ron4 Rondeau 4 (80) 18.82 0.21 �4 0.013 0 (1190)
Ron5 Rondeau 4 (80) 16.12 0.25 �4 0.024 0.031 (1935)
Ron7 Rondeau 10 (59) 44.61 0.22 �2.71 0.012 0 (1350)
SP2 Rondeau 15 (43) 29.81 0.5 �3.385 0.006 0 (1129)
Eb1 Rondeau 17 (60) 29.37 0.58 �1.375 0.049 0.01 (2017)
Eb2 Rondeau 21 (60) 33.96 0.35 �1.958 0.027 0.003 (2334)

Values in parentheses in the ‘‘Observed MLG’’ column indicate the number of individuals analysed by allozyme electrophoresis to
estimate MLG values, GDR, and LOGHW. Values in parentheses in the ‘‘Mean prevalence’’ column indicate the total number of
individuals sampled for each population over the whole study period to estimate sex ratio and mean prevalence
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transformed; prevalence and sex-ratio data were arcsine square-root transformed
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indeed, parasite prevalence in other Daphnia species has
been shown to vary widely both within and between
seasons (Little and Ebert 1999; Duncan et al. 2006). The
reason(s) for this variability are not clear, although cli-
mate has been linked to fluctuations in parasite preva-
lence in D. magna (Duncan et al. 2006). If levels of
infection of D. pulex are prone to climate-mediated
fluctuations the Red Queen hypothesis is not implausi-
ble, because substantial parasite effects are, perhaps,
apparent in some years. Our correlations between par-
asite prevalence and sexuality could still test the Red
Queen hypothesis if the between-pond variation we ob-
served reflects that seen in years of greater parasitism.
We found no significant relationship between parasite
prevalence and three different measures of sexuality,
however.

The observed positive relationship between sex ratio
and genetic estimates of sexuality (GDR and LOGHW)
suggests that all three provide reliable estimates of the
amount of sexual reproduction in a population. This is
consistent with previous studies showing that male
production is much reduced in obligately asexual D.
pulex populations (Hebert et al. 1989; Innes et al. 2000).
Genetic variation for male production has been shown
to exist among clones of D. pulex, and Innes et al. (2000)
have suggested this may lead to selection against male
production in obligate parthenogens. Earlier work has
shown that clones producing few or no males tend to
dominate populations in the areas in which they are
found (Hebert et al. 1989) and this is thought to be
because of their ability to avoid the ‘‘cost of males’’
(Innes et al. 2000).

For two populations there were significant differences
between the clonal composition of infected and unin-
fected samples, which suggests that some parasite-med-
iated selection may be occurring, despite the low levels
of infection. As with other Daphnia studies, both those
on parasites (Little and Ebert 1999) and those that do
not consider parasites (e.g. Hebert 1974), we observed
some dramatic genotype frequency fluctuations through
time (data not shown). The general cause of these
dynamics remains unknown, but at least one study on a
different Daphnia species (D. magna) was able to suc-
cessfully link allozyme frequency changes to parasitism
(Duncan and Little 2007).

If parasites are not responsible for maintaining
breeding system variation in D. pulex, it is not immedi-
ately obvious what is responsible. The populations sur-
veyed all occupy very similar habitats (temporary melt-
water ponds in deciduous forest), although the possi-
bility of substantial ecological variation between ponds
cannot be discounted. The Great Lakes region is dom-
inated by obligate parthenogens (Hebert et al. 1988,
1989), yet sexual populations persist, even coexist within
the same pond, despite evidence they have repeatedly
been exposed to ‘‘contagiously’’ asexual clones (Crease
et al. 1989; Hebert et al. 1989). Perhaps given sufficient
time and a consistently low level of Infection risk,
asexual domination will become complete.

Acknowledgments We thank D.J. Innes and P.D.N. Hebert for
providing information about location and breeding system of many
of our populations. We are especially grateful to P.D.N. Hebert for
providing us with laboratory facilities and technical advice during
our time in Ontario. We also thank Curt Lively and an anonymous
reviewer for comments on a previous version of the manuscript.
This work was supported by a B.B.S.R.C. grant to S.C.K.

References

Bell G (1982) The masterpiece of nature: the evolution and genetics
of sexuality. University of California Press, Berkeley

Ben-Ami F, Heller J (2005) Spatial and temporal patterns of par-
thenogenesis and parasitism in the freshwater snail Melanoides
tuberculata. J Evol Biol 18:138–146

Brown SG, Kwan S, Shero S (1995) The parasitic theory of sexual
reproduction: parasitism in unisexual and bisexual geckos. Proc
R Soc Lond B 260:317–320

Camacho JPM, Bakkali M, Corral JM, Cabrero J, Lopez-Leon
MD, Aranda I, Martin-Alganza A, Perfectti F (2002) Host
recombination is dependent on the degree of parasitism. Proc R
Soc Lond B 269:2173–2177

Crease TJ, Stanton DJ, Hebert PDN (1989) Polyphyletic origins of
asexuality in Daphnia pulex. II. Mitochondrial-DNA variation.
Evolution 43:1016–1026

Duncan A, Little TJ (2007) Parasite-driven genetic change in a
natural population of Daphnia. Evolution (in press)

Duncan A, Mitchell SE, Little TJ (2006) Parasite-mediated selec-
tion and the role of sex and diapause in Daphnia. J Evolut Biol
19:1183–1189

Dybdahl MF, Lively CM (1998) Host–parasite coevolution: evi-
dence for rare advantage and time-lagged selection in a natural
population. Evolution 52:1057–1066

Ebert D (1995) The ecological interactions between a microsporidian
parasite and its host Daphnia magna. J Anim Ecol 64:361–369

Green J (1974) Parasites and epibionts of Cladocera. Trans Zool
Soc Lond 32:417–515

Hakoyama H, Nishimura T, Matsubara N, Iguchi K (2001) Dif-
ference in parasite load and nonspecific immune reaction be-
tween sexual and gynogenetic forms of Carassius auratus. Biol J
Linn Soc 72:401–407

Hamilton WD, Axelrod R, Tanese R (1990) Sexual reproduction as
an adaptation to resist parasites (A Review). Proc Natl Acad
Sci USA 87:3566–3573

Hanley KA, Fisher RN, Case TJ (1995) Lower mite infestations in
an asexual gecko compared with its sexual ancestor. Evolution
49:418–426

Hebert PDN (1974) Enzyme variability in natural populations of
Daphnia magna. II. Genotypic frequencies in permanent pop-
ulations. Genetics 77:323–334

Hebert PDN (1978) The population biology of Daphnia (Crustacea,
Daphnidae). Biol Rev 53:387–426

Hebert PDN (1981) Obligate asexuality in Daphnia. Am Nat
117:784–789

Hebert PDN, Beaton MJ (1993) Methodologies for allozyme
analysis using cellulose acetate electrophoresis. Helena Labo-
ratories, Beaumont

Hebert PDN, Crease T (1983) Clonal diversity in populations of
Daphnia pulex reproducing by obligate parthenogenesis.
Heredity 51:353–369

Hebert PDN, Finston TL (2001) Macrogeographic patterns of
breeding system diversity in the Daphnia pulex group from the
United States and Mexico. Heredity 87:153–161

Hebert PDN, Ward RD, Weider LJ (1988) Clonal-diversity pat-
terns and breeding-system variation in Daphnia pulex, an
asexual–sexual complex. Evolution 42:147–159

Hebert PDN, Beaton MJ, Schwartz SS, Stanton DJ (1989) Poly-
phyletic origins of asexuality in Daphnia pulex. I. Breeding
system variation and levels of clonal diversity. Evolution
43:1004–1015

239



Hebert PDN, Schwartz SS, Ward RD, Finston TL (1993) Macr-
ogeographic patterns of breeding system diversity. I. Breeding
systems of Canadian populations. Heredity 70:148–161

Heller J, Farstey V (1990) Sexual and parthenogenetic populations
of the freshwater snail Melanoides tuberculata in Israel. Isr J
Zool 37:75–87

Innes DJ, Hebert PDN (1988) The origin and genetic basis of
obligate parthenogenesis in Daphnia pulex. Evolution 42:1024–
1035

Innes DJ, Schwartz SS, Hebert PDN (1986) Genotypic diversity
and variation in mode of reproduction among populations in
the Daphnia pulex group. Heredity 57:345–355

Innes DJ, Fox CJ, Winsor GL (2000) Avoiding the cost of males in
obligately asexual Daphnia pulex (Leydig). Proc R Soc Lond B
267:991–997

Jokela J, Lively CM (1995) Parasites, sex, and early reproduction in a
mixed population of freshwater snails. Evolution 49:1268–1271

Jokela J, Lively CM, Dybdahl MF, Fox JA (2003) Genetic varia-
tion in sexual and clonal lineages of a freshwater snail. Biol J
Linn Soc 79:165–181

Kelley SE (1994) Viral pathogens and the advantage of sex in the
perennial grass Anthoxanthum odoratum. Phil Trans R Soc
Lond B 346:295–302

Kondrashov AS (1993) Classification of hypotheses on the
advantage of amphimixis. J Hered 84:372–387

Kumpulainen T, Grapputo A, Mappes J (2004) Parasites and
sexual reproduction in Psychid moths. Evolution 58:1511–1520

Little TJ (1999) Parasite mediated selection in Daphnia. PhD Dis-
sertation, Zoologisches Institut, University of Basel, Switzerland

Little TJ, Ebert D (1999) Associations between parasitism and host
genotype in natural populations of Daphnia (Crustacea;
Cladocera). J Anim Ecol 68:134–149

Lively CM (1987) Evidence from a New Zealand snail for the
maintenance of sex by parasitism. Nature 328:519–521

Lively CM (2001) Trematode infection and the distribution and
dynamics of parthenogenetic snail populations. Parasitology
123:S19–S26

Lively CM, Jokela J (2002) Temporal and spatial distributions of
parasite and sex in a freshwater snail. Evol Ecol Res 4:219–226

Lively CM, Craddock C, Vrijenhoek RC (1990) Red Queen
hypothesis supported by parasitism in sexual and clonal fish.
Nature 344:864–866

Mangin KL, Lipsitch M, Ebert D (1995) Virulence and transmis-
sion modes of two microsporidia in Daphnia magna. Parasi-
tology 111:133–142

Maynard Smith J (1978) The evolution of sex. Cambridge Uni-
versity Press, Cambridge

Michiels NK, Beukeboom LW, Pongratz N, Zeitlinger J (2001)
Parthenogenetic flatworms have more symbionts than their
coexisting, sexual conspecifics, but does this support the Red
Queen? J Evol Biol 14:110–119

Moritz C, McCallum H, Donnellan S, Roberts JD (1991) Parasite
loads in parthenogenetic and sexual lizards (Heteronotia binoei):
support for the Red Queen hypothesis. Proc R Soc Lond B
244:145–149

Schwartz SS, Cameron GN (1993) How do parasites cost their
hosts—preliminary answers from trematodes and Daphnia ob-
tuse. Limnol Oceanogr 38:602–612

Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. W.H. Freeman and
Co., New York

Stirnadel HA, Ebert D (1997) Prevalence, host specificity, and
impact on host fecundity of microparasites and epibionts in
three sympatric Daphnia species. J Anim Ecol 66:212–222

Vernon JG, Okamura B, Jones CS, Noble LR (1996) Temporal
patterns of clonality and parasitism in a population of fresh-
water bryozoans. Proc R Soc Lond B 263:1313–1318

West SA, Lively CM, Read AF (1999) A pluralist approach to sex
and recombination. J Evol Biol 12:1003–1012

240


	Parasitism and breeding system variation in North American �populations of Daphnia pulex
	Abstract
	Introduction
	Reproduction and parasitism in Daphnia
	Materials and methods
	Sampling and examination
	Fig1
	Allozyme electrophoresis
	Analysis
	Results
	Discussion
	Tab1
	Fig2
	Acknowledgments
	References
	CR1
	CR2
	CR3
	CR4
	CR48
	CR5
	CR6
	CR7
	CR8
	CR9
	CR10
	CR11
	CR12
	CR13
	CR14
	CR15
	CR16
	CR17
	CR18
	CR19
	CR20
	CR21
	CR22
	CR23
	CR24
	CR25
	CR26
	CR27
	CR28
	CR30
	CR31
	CR32
	CR33
	CR34
	CR35
	CR36
	CR37
	CR39
	CR40
	CR41
	CR42
	CR43
	CR44
	CR45
	CR46
	CR47


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


